硅烷的用量直接影響交聯程度。采用工藝1
時, 凝膠質量分數一直隨硅烷的用量平緩增加, 但是
最大的交聯度也小于30 %; 而采用工藝2 時, 凝膠質量分數在硅烷的用量少于3 份時, 隨硅烷用量的增加而增加, 并在硅烷用量達到3 份時達到了最大點,之后略有下降。說明在采用工藝1 時, 硅烷未能有效的與EVA 進行接枝反應, 產生的部分凝膠只能是EVA 與硅烷發生了部分交聯反應或者是直接與過氧化物進行了交聯。采用工藝2 則反應完全, 并出現接枝飽和點, 低于此飽和點的用量將明顯的縮減交聯度, 而高于此飽和點的用量并不能增加交聯度, 多余的硅烷游離在EVA 中, 不但不能改善材料的性能,甚至可能形成弱應力點圖2 硅烷用量和凝膠質量分數的關系圖3 硅烷用量與拉伸強度和伸長率的關系圖3 為硅烷用量與拉伸強度和斷裂伸長率之間的關系。隨體系的交聯度的提高, 分子鏈之間的相對運動困難, 相當于提高了分子鏈的剛性, 使拉伸強度上升, 斷裂伸長率下降。215 引發劑的影響圖4 為引發劑用量與凝膠質量分數的關系, 如圖4 工藝2 中所示, 用量少, 得到的凝膠質量分數會明顯降低, 無法改善材料的交聯性能; 但用量過多, 凝膠質量分數也出現下降的趨勢。原因如下: 初始DCP的增加會增加接枝的質量分數, 提高了凝膠質量分數, 但當其達到某一極限時, 會產生由于接枝過度增加導致PE 大分子鏈上所含官能團數量急劇增長, 大分子鏈段運動受阻, 官能團之間發生碰撞交聯反應機會減少, 致使凝膠質量分數反而出現降低, 甚至DCP在用量較大時會奪取PE 的活性點直接參與反應, 形成早期的交聯鍵而使硅烷喪失交聯的機會和可能。